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412 G.O.ROBERTS

In a previous paper it has been established that almost all spatially periodic motions of an infinite
homogenous conducting fluid give magnetohydrodynamic dynamo action for almost all values of the
magnetic diffusivity or resistivity A. It was shown that there is a dynamo action if and only if for some
real vector j there is a growing magnetic field solution of the form

B(xa t) = H(x) €Xp (pt+1} x)’

where the complex vector function H(&) has the same periodicity as the motion. The complex growth
rate p was studied in a first-order limit of small j to obtain the above result.

In this sequel the special case of spatially periodic motions with their three components functions
of the two Cartesian coordinates y and z only is considered. The first-order method establishes dynamo
action for only half, in a certain sense, of the motion-resistivity combinations.

It is shown that the two-dimensional spatially periodic motion

u = (cos y—cos z, sin z, sin y)

is a first-order dynamo, at least for almost all resistivities. Three similar motions, which are not first-
order dynamos for any resistivity, are also studied. It is proved that multiple-scale versions of all three
can give growing magnetic fields for certain resistivities when terms of higher order in j are included.
Heuristic descriptions of all four dynamo mechanisms are given.

A numerical method is described for determining the most rapidly growing magnetic field solution of the
above form, and results for all four motions are presented, giving the growth rate Rep as a function
of j, for a range of resistivities A down to about 10-2. The first motion gives growing solutions for all
resistivities in this range, the others give dynamo action only for resistivities below critical values near
unity. The numerical and analytic results agree.

1. INTRODUGTION

The magnetohydrodynamic dynamo action of spatially periodic motions of an infinite homo-
genous conducting fluid has been studied previously (Roberts 19704). This previous paper will be
called part I, and its sections and equations referred to as, for example, § I, 4 and equation (I, 2.11).
The main result was that almost all spatially periodic motions and motions periodic in space-time
give dynamo action for almost all values of the magnetic diffusivity or resistivity A. More precisely,
for any given spatial periodicity, there is a set of infinitely differentiable motions, each of which
will give dynamo action for all finite resistivities except for possibly a discrete set of resistivities
with no non-zero point of accumulation. This set of motions is open with respect to the natural L,
norm on the linear space of infinitely differentiable motions, and its closure includes the whole
space.

The case of two-dimensional spatially periodic motions (with their three components spatially
periodic functions of the Cartesian coordinates y and z only) is of particular interest in view of
Cowling’s theorem (1933) that magnetic fields independent of one Cartesian coordinate cannot be
maintained by dynamo action. As shown below, this does not exclude the dynamo action of
motions independent of one Cartesian coordinate. Further, such motions simplify the analytic
and especially the numerical study of the dynamo action, and the dynamo mechanism can be
understood more readily in heuristic terms of the ‘freezing-in’ of the field lines together with
diffusion.

The application of the analysis of part I to these motions is summarized in §§2 and 3. It is
shown again that there is dynamo action if and only if for some real vector j there is a magnetic
field solution of the form B(s,1) = H(%) exp (pi+ij- ), (L1)
with Rep positive, where the vector function H(#) has the same periodicity as the motion. For
small j, there are solutions with Re p vanishing to zero order in j and positive to first order, if and
only if two of the three eigenvalues of the symmetric part of a certain real 3 x 3 tensor a,,, defined
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TWO-DIMENSIONAL SPATIALLY PERIODIC DYNAMOS 413

for at least almost all resistivities, have the same sign. But in the two-dimensional case one eigen-
value is identically zero. It is shown that in a certain sense half of the motion-resistivity combina-
tions are first-order dynamos and have growing solutions of the form (1.1) for sufficiently small j
in all directions not in the y—z plane.

The particular two-dimensional spatially periodic motion

u = (cosy —cos z, sin z, sin y)

is studied in §5. Symmetry arguments introduced in §4 are used to show that it is a first-order
dynamo for all resistivities except possibly a discrete set with no non-zero point of accumulation.

Three further illustrative motions are introduced in §6. The symmetry arguments establish
that none is a first-order dynamo. A high-resistivity type of analysis is used in §§ 11 to 13 to show
that multiple-scale versions of all three can give dynamo action for certain resistivities when
terms of higher order in j are included.

Numerical results for the largest growth rate Re p, as a function of j, with j in the x-direction,
are presented in § 9, for all four illustrative motions and for a range of resistivities down to about
10-2. Accurate results could not be obtained for smaller resistivities with the computer storage
and time available. The first motion gives growing field solutions for all resistivities in this range,
the others give dynamo action only for resistivities below critical values near unity. The inverse
iteration method used to find the fastest growing field solution is described, and questions of
convergence and accuracy are discussed, in § 10.

A heuristic description of the four dynamo mechanisms in terms of the ‘freezing-in’ of magnetic
field lines is given in § 7. The significance of the results, particularly in relation to further studies on
the dynamo problem, is discussed in §14.

Preliminary results for the last two motions have been published previously (Roberts 1969),
without detailed description of the analytic and numerical methods employed, and prior to the
discovery of the general result of part I. The presentation here is independent of the earlier one.

2. THE MOTIONS AND THE MAGNETIC FIELD EQUATIONS

It was shown in I, appendix A how the analysis of spatially periodic motions in §§1, 2 and I, 3
can be extended to motions periodic in space-time. The extension to two-dimensional spatially
periodic motions is simpler, and is therefore only summarized here.

A two-dimensional spatially periodic function is a function f(y, z), independent of the Cartesian
coordinate x, and satisfying the equations,

S(#+1) = fla+1,) = f(), (2.1)

for all position vectors & = (x,y, z), where I, = (0,1,,,[,,) and I, = (0,/,,,/,,) are fixed indepen-
dent vectors in the y—z plane. A function with the same periodicity as the motion u(y, z) under
consideration will be called u-periodic. The average and oscillatory parts of f are defined as

1 1
s = [ 06 d6 6 1) (2.2

= (1/1y) | fly,2)dydz,

T2

S =S(%) =S4, (2.3)

37-2
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414 G.O.ROBERTS

where 7, is the area in the y—z plane defined by the first integral. Two-dimensional spatially
periodic scalar and vector functions can be expressed in the Fourier series form

J®) = 3 f(k)exp ik- ), (2.4)

where the set K, of three-dimensional vectors k is defined by

kac =0,
(ky k,) = 2L (ny, ny), (2.5)
where n; and n, are arbitary integers and
ly, 1
L= [“’ 12], 2.6
l2y 122 ( )

Equations (2.4) to (2.6) correspond to equations (I, 2.6) to (I, 2.9) in part I. From the definitions,

SA=A0), (=0, (VH)*=0. (2.7)

It may be shown as in §I, 2 that there is dynamo action, in the sense that with an initial field of
finite total magnetic energy, this energy will grow indefinitely, if and only if there is a growing
magnetic field solution of the form

B(x,y,2,t) = H(y, z) exp (pt+1j- %), (2.8)
where the complex vector function H(y, z) is u-periodic, for some real vector j in the vector set J,
with arbitrary x-component j, and with y- and z- components g:ven by
(jy:jz> = 21TL_1<V1: Vz);
for arbitrary vy, v, satisfying —% < v; < 4, cf. equations (2.5) and (I, 2.22). Further, if dynamo
action occurs, the results (I, 2.25) and (I, 2.29) for the asymptotic form of the growing magnetic
field and the growing total magnetic energy as ¢ — co apply without alteration.
The magnetic field equations for a fluid with uniform conductivity o e.m.u. are
V-B=0, (2.9)
B = Vx (ux B)+AV2B, (2.10)

where A is the resistivity or magnetic diffusivity 1/4mo. Attention is confined to incompressible
fluids and to motions with zero average, so that

Viu=0, u=0, (2.11)

and equation (2.10) can be written in the alternative form,

B = (B-VYu—(u-V)B+AV2B. (2.12)

Substituting equation (2.8) into equations (2.9), (2.10) and (2.12) gives
(V+ij)-H =0, (2.13)
pH = ZH, (2.14)

where & denotes the linear differential operator with the alternative forms, equivalent only for
fields satisfying equation (2.13),

POH = (V+if) x (ux H) + A(V +ij)2H, (2.15)
POH = (H-V)u— (u-V +if) H+ A(V +if)°H, (2.16)
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The remaining sections are basically concerned with the eigenvalue problem defined by equations
(2.13) to (2.16).

It should be noted that if the x-component of j is zero, the field B defined by equation (2.8) is
independent of ¥, and must decay by Cowling’s theorem (1933). But this theorem does not exclude
the dynamo action of motions which are independent of x.

3. THE FIRST-ORDER ANALYSIS AND THE GENERAL RESULT

As in §1, 3, attention is now confined to small j. The expansion of the eigensolution as
b= %pn’ H(x) = %Hn(x),

where p,, and H, (%) are explicitly of nth order in the components of j, was justified in §I,
appendix D. To zero order, the average of equation (2.14) with the alternative (2.15) gives

pOHf)& = Oa

using the results (2.7). Attention is confined to eigensolutions with H3 non-zero. To first order in
the components of j, the average of equation (2.14) becomes

p HE = ij x (1 x Hg)A, (3.1)
Now (u x Hg)A is uniquely determined by H, in the form
(ux H.'))f} = aqr{HOA}r' (3.2)

Here g and r take the values 1, 2 and 3 and the summation convention is implied. In equation
(3.2), Hy(#) is determined uniquely (at least for almost all resistivities A) by the zero-order
oscillatory part of equation (2.14)

V x (ux Hy) +AV2H; = —V x (u x HE). (3.3)

Thereal 3 x 3 tensor «,, determined in equation (8.2) by the linear dependence of Hyon Hy is thus
a function of the motion and resistivity only. It was shown in §I, 5 that if the restriction to real
positive A is removed, the tensor a,, determined by equations (3.2) and (3.3) is an analytic func-
tion of A, with non-zero poles but no other non-zero singularities.

Thus it is not necessary to study the first-order part H,(«) of the eigenvector in obtaining the
first-order part p, of the eigenvalue. Equations (3.1) and (3.2) are sufficient. The zero-order
magnetic field solution, B = H,(x),
is an exact steady u-periodic solution of the magnetic field equation (2.10), and is obtained by
setting j and p to zero in equation (2.8). It is this field solution which is perturbed in the analysis.
Physically, equation (3.2) indicates the linear dependence of the average electromotive force
(u x B)A on the average magnetic field BA which is maintained at infinity.

The three-dimensional eigenvalue problem defined by equations (3.1) and (3.2) was studied in
§1, 4. It was shown that there are j-directions for which Re p, is positive, if and only if the
symmetric part o, of the real tensor «,, has two non-zero eigenvalues with the same sign. Thus for
dynamo action it is sufficient that the determinant of the symmetric part is non-zero, and this
condition was used in §1, 5.
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416 G.O. ROBERTS

However, for the two-dimensional spatially periodic motions considered here, the first row and
column of e, vanish. The first column vanishes since the right-hand side of equation (3.3) is zero
when H is in the x-direction, using equation (2.11). The first row vanishes since the x-component
of (ux Hy)* in equation (3.2) is determined by the y- and z-components of u and Hjy, which,
using equation (2.11) and the equations,

V-Hy =0, (Hp)* =0,
are derivable from u-periodic stream functions ¢, and ¢ 5. Thus the x-component, using equation

(2.2), is (1 x Hp)d = - (Vi x Vi)

=3 [ Vx (Vi) dyde
2J T2

the integral vanishes when we invoke Gauss’s theorem in two dimensions and the periodicity
boundary condition.

Therefore the symmetric part e of the real tensor «,, has one of its eigenvalues zero, corre-
sponding to an eigenvector in the ¥-direction. The other two eigenvectors must lie in the y—z plane.
If the corresponding two eigenvalues have the same sign, there are growing field solutions of the
form (2.8) for sufficiently small j in all directions not in the y—z plane. If the two eigenvalues have
opposite signs, or if more than one eigenvalue is zero, there is no dynamo action to first order in j.

Equations (3.3) was solved in §1, 5, with the general solution (I, 5.6),

H) = (AF - 2)"(V3)"Y{ - Vx (ux H)}, (3.4)
valid if A is not an eigenvalue of the compact operator 2, on u-periodic solenoidal vector functions
with zero mean, defined by QH' = (V)=L{—V x (ux H)}. (3.5)

If A is greater than the bound ¢ of the bounded spectrum of 2, equation (3.4) can be written as

the convergent sum, o
Hy= 3 Av12n(V2) "=V x (ux H})), (3.6)
n=10

cf. equation (I, 5.10). Thus, using the Fourier series forms corresponding to equation (2.4) for u
and Hg, and using the corresponding form (I, 5.11) for the operator 2, we can obtain (u x Hg)* in
precisely the form (I, 5.12),

0

(ux Hy)A = l Al_’%]u,x (0,_y % (ty_y+ ... x (0; x (uy x HY))...)), (3.7)

=2

where ¥} denotes a sum over all ordered sets {k;, k,, ..., k;} of [ non-zero vectors in the set K,
1)
defined by equation (2.5), with zero sum and with non-zero partial sums

m, = k,+ky+...+k;, and where u; =1(k,), 0, =im,/m3.
Equation (3.7) gives &, as a power series in A%, and can be rewritten as

, )

{(ux BN, = 3 S5 (H), (3.9
(cf. equation (8.2)). For all [ values, o) has zeros in its first row and column. Childress (1967) has
shown that of!) is symmetric or antisymmetric according as [ is even or odd. Further,

o = — 43 vx w-k(k)2k,k, (3.9)
(K3)
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(cf. equation (I, 5.18)); here @1(k) = v+iw, and ¥ denotes a sum over non-zero vectors k in
(Ky)

the set K, defined by equation (2.5) in which if k is included, — k is not.

The determinant (A, u) of the trailing 2 x 2 minor of oz is the product of the two eigenvalues
which do not vanish identically. From above, there is dynamo action to first order in j if and onlyif
(A, u) is positive. It is in this sense that half of the motion and resistivity combinations are first-
order dynamos. The properties of «(A, u) are discussed below, and the use of the word ‘half” is
defended.

The norm |u|| on the linear space of infinitely differentiable motions of given two-dimensional
spatial periodicity, defined by 1
Jul = 5[ Julrdyaz

= X |a(k)[?
K,

(3.10)

(cf. equations (2.2) and (2.4)) is first introduced. Then from equation (3.4) and the definition
(3.5) of the compact operator 2, a(A, u) is a continuous function of (A, u) wherever it is defined,
and for fixed ¢ is an analytic function of A (with poles at the u-dependent spectrum of 2), real for
real A. Further, for A > ¢(u), (A, u) has the convergent power series expansion,

a(d,u) = 3 ()N, (3.11)
=2
cf. equation (3.8). Here a® = 0 for [ odd, and
o (u) = |og]. (3.12)

It can be shown easily from equation (3.9) that if a®(u) is zero, there are motions arbitrarily
close with a® positive and negative. It can be shown with greater difficulty from equation (3.4)
that if a(A, u) is zero, there are motions arbitrarily near with a positive and negative, for the same
value of A. From the continuity property, it is clear that if (A, u) is non-zero for a given motion
and positive resistivity, then it is non-zero, and has the same sign, for all sufficiently close motions
and positive resistivities.

For any particular motion, it is only really practicable to obtain the first term a®(u) of the
above series. Thus a definite statement can only be made about whether it is a first-order dynamo
for sufficiently large resistivities, and it would be hard to predict what sign changes in (A, u)
might occur for lower resistivities. For the four illustrative motions studied below, symmetry
arguments are used to obtain the form of the tensor o, for general resistivity. It is shown that
o (A, u) is positive for the first motion for almost all resistivities A, while for the second motion
(A, u) is identically negative. But such arguments can only be applied in special cases.

Clearly an analytic meaning cannot be attached to the statement that half the possible motion—
resistivity combinations are first-order dynamos without the introduction of some sort of Lebesgue-
type measure. It is reasonable, however, to state that half the motions with given spatial period-
icity have a positive x-component at the origin, It appears equally reasonable to state that half
have a® positive and are first-order dynamos for sufficiently large A, cf. equations (3.9) and
(3.12). The full statement would be very unreasonable if the possibility remained that o(A, u) is
negative for all sufficiently small A, but this possibility is excluded by the first illustrative motion.
So the sign of (A, u) does divide the motion-resistivity combinations into two sets, neither having
apparently any marked property making it ‘bigger’ than the other.
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418 G.O.ROBERTS

4. SYMMETRY ARGUMENTS FOR THE TENSOR &,

In this section the symmetry arguments used to establish the general form of the tensor a,, for
the four illustrative motions studied in this paper are described. The tensor is a function of the
motion and of the resistivity A. Coordinate transformations which leave the motion invariant are
introduced for each motion, the corresponding tensor must then also be invariant under the
transformation.

Consider the motion u(#), and the coordinate transformation given by

¥ =Ax+Db, (4.1)

where b is fixed and 4 is a real orthogonal 3 x 3 matrix. Then in the new coordinates the same
motion at the same position has components in the new coordinate directions given by

u' = Au. (4.2)
This equation determines ¢’ as a function of &; equation (4.1) can then be used to find u'(4’).

If u’(x") has the same functional form as ©(#), then the tensor «,, must be invariant under the
transformation. The transformed tensor is given by

061,17‘ = Aqurt Xty (4.3)

and the invariance implies that Qg = Qg (4.4)
The foregoing arguments must be changed slightly when coordinate reflexions are allowed.

For pure rotations, det (4) = 1,

while for reflexions, det (4) = —1.

If reflexions are allowed, pure vectors and pure tensors transform according to equations (4.2)
and (4.3) respectively, while pseudo-vectors and pseudo-tensors transform according to equations
(4.2) and (4.3) with a sign change for reflexions. The alternating tensor €, is a pseudo-tensor.
Now u is a pure vector; the cross-product in equation (3.2) then implies that a,, is a pseudo-
tensor, and a sign change must be included in equation (4.3) for reflexions.

5. THE MAIN ILLUSTRATIVE MOTION

The first two-dimensional spatially periodic motion proposed as an example is the motion,
u = (cosy —cos z, sinz, siny). (5.1)

This motion was chosen to make a® positive, as defined by equations (3.9) and (3.12). In the
equation for u(#) corresponding to equation (2.4),

ﬁ(O, 1,0) = %(1: 0, '"i),

4(0,0,1) = 3(—1, —i,0).

Substituting in equation (3.9), 0 0 0
a=[0 -1 o, (5.2)
0 0 -1

and «® = 1. Thus the motion gives dynamo action at least for all sufficiently large resistivities.
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The symmetry arguments described in §4 can be used to show that this motion is a first-order
dynamo for almost all resistivities A. Consider the coordinate rotation given by

¥ =—x, Yy =m—y, 2z =m+z (5.3)
cf. equation (4.1). Then, from equation (4.2),
u' = (—cosy+cosz, —sinz, siny)
= (cosy’ —cosz’, sinz’, siny’),

and the form of the motion is invariant. Suppose

0o 0 O
%y =10 a; a,,
0 a; a,

where a,, a,, a; and g, are analytic functions of A, defined for almost all values of A, and are real for
real A. Then substituting in equations (4.3) and (4.4), we have

0 0 0 0 0 O
0 a, —a| =10 a a,
0 —a, a, 0 a3 a

and a, and ay vanish. Consider further the coordinate rotation given by

’

¥=x y=mn4+z, Z=mw—y. (5.4)
Then u' = (cosy—cosz, siny, —sinz)

‘ = (cosy’ —cosz’, sinz’, siny’),
and the form of the motion is invariant. Substituting in equation (4.4), we have

0 0 o0 0 0 O 0 0 O
0 a0 0|=]0 a Of=|0 a O}, (5.5)
0 0 o 0 0 a 0 0 a

where a(A) is a real analytic function of A, and is non-zero for sufficiently large A from equation
(5.2). Therefore a(A) cannot vanish identically except on a set of discrete A values, at most
denumerable and with no non-zero point of accumulation. So the determinant « is positive, and
the motion is a first-order dynamo in the sense of § 3, for almost all resistivities.

Itis also a Beltrami motion, with V x ©# = w. Thus it is a dynamically possible steady motion of
an inviscid incompressible fluid with zero Lorentz force, since the equation for steady motion,

p(u-Viu = —Vp,
can be written as ux (Vxu) = V(plp+iu?),

and this has the solution p = p,— 1pu? if the left-hand side vanishes.

In figure 1 the stream lines for the components of the motion in the y—z plane are shown,
together with the sign of the ¥-component in the different regions of the y—z plane. It should be
noted that the stream function cosy — cos z for the components in the y—z plane is precisely the
x-component of the motion, thus the stream lines are also lines of constant speed in the #-direction.
Individual fluid particles therefore move at constant speed in the x-direction, while moving round
the stream lines indicated.

38 Vol, 271. A,
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A heuristic description of the dynamo mechanism for this motion is given in §7. Numerical
results, giving the growth rate, for j in the x-direction, as a function of A and j, are presented in § 9.

Ficure 1. The sign of the x-component and the stream lines for the y- and z-components of the first motion
given by # = (cos y —cos z, sin z, sin y).

6. THREE ADDITIONAL ILLUSTRATIVE MOTIONS

The three further motions introduced in this section are the following:

u = (cosy+cosz, sin z, siny), (6.1)
u = (2cosycos z, sin z, siny), (6.2)
u = (sin (y +z), sin 2z, sin 2y). (6.3)

The third and fourth motions were chosen on the basis of the heuristic arguments described in §7.
The process of thought that led to these choices is described in detail in the paper presented in
1967 and published two years later (Roberts 1969). They were unfortunate choices in that for the
fourth motion the tensor a,, is identically zero, while for the third it is identically antisymmetric.
The second illustrative motion was chosen to make a® negative in the sum (3.11); in fact « is
identically negative for this motion. So between them these three additional motions cover the
main possibilities for motions which are not first-order dynamos.

The second motion is described in figure 2. Individual fluid particles move backwards and
forwards in the x-direction while going round and round the stream lines; their net motion in the
x-direction is zero from the symmetry. So each particle moves round a closed path. The third
motion is shown in figure 3. For this motion some fluid particles while going round their stream
lines move steadily in the negative x-direction, others move in alternate x-directions, with a net
motion in either. The fourth motion is shown in figure 4; here each fluid particle in moving round
its stream line is either always in a region of positive u, or always in a region of negative u,,.
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Ficure 3. The third motion # = (2 cos y cos z, sin z, sin y), with the sign of the x-component indicated.

38-2
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The shapes of the tensors a,, for these three motions are given in table 2 on page 428. They are
derived by using the symmetry arguments of §4, with coordinate transformations similar to the
transformations (5.3) and (5.4) used for the first motion. Full details are given in the second part
of the author’s dissertation, of which this paper is a shortened version (Roberts 19705, pp. 102—
105). It may be seen from table 2 that none of these three motions are first-order dynamos in the
sense of §3, for any resistivity A, since the determinant « of the symmetric part of the trailing
minor of the tensor o, is negative for the second motion and zero for the third and fourth motions.

F1GURE 4. The fourth motion ¥ = (sin (y + 2), sin y, sin z), with the sign of the x~component and the lines
where it vanishes shown.

The numerical results presented in §9 establish that all three motions act as dynamos for
sufficiently small resistivities, when effects of second order and higher orders in the components
of j are included. A heuristic description of the dynamo mechanisms is given in §7.

It has not been found possible to prove analytically that these three motions can act as dynamos.
Resistivities sufficiently high to make analysis practicable exclude dynamo action. The multiple-
scale versions

u = (Ucosky+ Ucoslz, Vsinlz, Wsin ky), (6.4)
u = (2Ucos kycoslz, Vsinlz, Wsinky), (6.5)
u = (Usin (ky +1z), Vsin 2z, Wsin 2ky), (6.6)

of the motions (6.1), (6.2) and (6.3) are therefore introduced. It is established in §§11 to 13 that
for suitable values of the relevant parameters all three can give dynamo action, although they are
not first-order dynamos. The value of these analytic results is in confirming the accuracy of the
computer programs (cf. §10 and appendix C) and in clarifving the dynamo mechanisms which
operate for the single-scale motions.
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7. HEURISTIC DESCRIPTION OF THE FOUR DYNAMO MECHANISMS

For motions with two-dimensional periodicity it is possible to get a physical picture of the
dynamo mechanism in terms of the ‘freezing-in’ of field lines and subsequent diffusion. The field
equation (2.12) can be written in the form,

DB/Dt = (B-V)u+AV?B, (7.1)

where D/Dt denotes the material derivative /0t + (1 V). For zero resistivity A, the magnetic field
lines behave precisely as if they were frozen to the fluid elements. If the magnetic field at a point
at a given instant is parallel to an infinitesimal fluid element ds, then at any subsequent time the
field at the element’s instantaneous position will still be parallel to the element and will have
increased in proportion to the length of the element. This is because the equation for the variation

of ds is clearly D(ds)/D¢ = (ds-V)u (7.2)

(cf. equation (7.1)). For finite resistivity A, the magnetic diffusion tends to smooth the magnetic
field out and keep the distortion of the field lines by the fluid motion from growing indefinitely.

The dynamo mechanism for the first motion (5.1) can be described in terms of figure 1. It may
be seen that whenever a field line in the y—z plane is lifted upwards by the x-component of the
motion it is twisted counter-clockwise; wherever it is moved downwards by the x-component it is
twisted clockwise. Consider the initial field

B = (0, cosjx, 0),

with field lines in the positive y-direction near jx = 0, and in the negative y-direction near jx = Tr,
After a time 1/A (the diffusion time-scale) this field is distorted by the motion in such a way that
the field lines near jx = 3 tend to be in the z-direction. The lines initially near jx = 0 are twisted
anticlockwise; those initially near jx = 1 are twisted clockwise. Thus the distortion of the field
(0, cosjx, 0) generates a mean field which is a multiple of (0, 0, sin jx). Similarly, the distortion of
an initial field (0, 0,sinjx) generates an additional mean field of the form (0, cosjx, 0). So the
distortion of the initial field
(0, cos jx, sin jx)

generates an additional mean field of the same form, which serves to regenerate and amplify the
initial field. The field pattern therefore remains stationary while the field amplitude grows
steadily.

The dynamo mechanism for the second motion (6.1) can be described directly in terms of
figure 2. It may be seen that whenever a field line initially in the direction (0, 1, 1) is lifted by the
x-component of the motion, it is stretched by the y- and z-components; whenever it is lowered it is
contracted. For field lines initially in the (0,1, — 1) direction the reverse is true. Thus the dis-
tortion of the initial field, B = (0,1, +1)cosjs,
generates an additional mean field of the form,

B = 1+ (0,¢, +¢) sinjx,

¢ being a positive constant. So two growing field solutions can be expected, with mean fields in the
directions (0, 1, 1) and (0, 1, — 1), and with the field pattern moving respectively in the positive
and negative x-directions as the magnetic field grows.
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An alternative heuristic explanation makes the relation of this motion to the first motion more
clear. For both motions, from figures 1 and 2, wherever field lines initially in the y-direction are
lifted up, they are twisted anticlockwise to go in the positive z-direction; wherever they are
lowered the opposite is true. Thus the distortion of the field,

B = (0, cosjx, 0),

generates an additional mean field which is a multiple of the vector (0, 0, sinjx). This effect is the
same for both motions because as functions of y, both motions are the same. But when field lines

4

| g
P
1
2

N,
S

-+

/

oQ -

Q-

FicurEe 5. The dynamo mechanism for the third motion. The thickness of the field lines denotes closeness to
the reader. Field lines in the z-direction are distorted into the indicated spirals. The reinforcement of the
y-components at jx = 4T and the sign of the shear rate du,/dy are shown.

initially in the z-direction are lifted up, they are twisted into the y-direction for the second motion
but into the negative y-direction for the first. This is a consequence of the change in sign of the
part of 4, which is a function of z. So the distortion of the field,

B = (0,0, cosjx),

generates an additional mean field which is a positive multiple of the vector (0, sinjx, 0) for the
second motion, and a negative multiple for the first. This makes it clear why the first motion is a
more efficient dynamo and why the field pattern moves for the second motion as the field grows.

The dynamo mechanism for the third motion (6.2) is illustrated in figure 5. Field lines initially
in the z-direction are distorted by the motion into the indicated spirals. With the initial field,

B = (0,0, cosjx), (7.3)

the field lines alternate in direction for jx equal to successive multiples of . The figure illustrates
in the (x, y) diagram the reinforcement of the y-components of the distorted field at each value of y
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for values of jx near odd multiples of 4. Clearly the average of the distorted field with respect to

z has a y-component of the form, .
, = sinjx cosy.

This field is distorted by the z-component sin y of the motion to produce an additional mean field

of the form, B = (0, 0, sinjx). (7.4)

In the figure it can be seen that the reinforced y-component atjx = 3 always has the same sign as

the shear rate du,/dy. Thus the product is positive, and the distortion of the y-component gives a

4

e

pojes

poj—

l Do
ool

Q0
¢

x
Ficure 6. The dynamo mechanism for the fourth motion. The thickness of the field lines indicates closeness to the

reader. Field lines in the z-direction are distorted into the double spirals shown. The reinforcement of the
y-components and the sign of the shear rate du,/dy are indicated.

v
5

field in the positive z-direction, in agreement with equation (7.4). Equations (7.3) and (7.4)
together imply that the field pattern moves in the positive x-direction as the field grows. The
symmetry of the motion (6.2) between the y- and z-directions establishes that there is a corre-
sponding growing field solution with the mean field in the y-direction, with the field pattern also
moving steadily in the positive x-direction.

The dynamo mechanism for the fourth motion (6.3) is illustrated in figure 6. Field lines
initially in the z-direction are distorted into the indicated double spirals, and where these dis-
torted lines pass through the original position, the y-components reinforce. Clearly, with an
initial field of the form (7.3), the average of the distorted field with respect to z has a y-component
of the form B, = cos jx cos 2y.

This component is distorted by the z-component sin 2y of the motion to generate an additional
mean field component of the form (7.3), so that the field grows steadily with the field pattern
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remaining stationary. It may be seen in the figure that the reinforcing y-components have the
same sign as the shear rate du,/dy near x = 0, so that the interaction regenerates the initial field
in the z-direction. Further, the symmetry of the motion (6.3) between the y- and z-directions
again establishes that there is a corresponding growing field solution with the mean field in the
y-direction.

These heuristic arguments are confirmed by the numerical results reported in §§9 and 10.
They are summarized in table 1. The distortion of initial fields (0, cosjx, 0) and (0, 0, cos jx)

TABLE 1. SUMMARY OF THE FOUR MECHANISMS

motion ... I(5.1) I1(6.1) II1(6.2) IV (6.3)
illustrative diagrams ... figure 1 figure 2 figures 3, 5 figures 4, 6
direction and phase of mean of generated field
initial field — A .
component sin- B, B, ahead B, ahead B, ahead B, same
usoidal in jx B, B, behind B, ahead ’ B, ahead B, same
alternatives for the L (0, 1, 1) cos jx (0, cos jx, 0) (0, cos jx, 0)
mean of the growing field (0, cos jx, sin jx) (0,1, —1) cosjx (0, 0, cos jx) (0, 0, cos jx)
motion in x-direction of stationary positive positive stationary
the growing magnetic negative

field pattern

generates fields with their means with respect to ¥ and z having additional parts in the y- or
z-direction, possibly advanced or retarded in phase, as indicated in the table and derived above.
Thus the distortion of the field (0, cosjx, 0) by the first motion generates the additional mean field
(0, 0,sinjx), which is ahead in phase. These results determine the indicated alternatives for the
mean of the growing field, so that the additional mean field is a reinforcement. The phases
determine any motion in the x-direction of the growing magnetic field pattern.

8. THE FOURIER-ANALYSED EQUATIONS

In this section the eigenvalue problem (2.14) is expressed in its Fourier series form. This form is
required for the numerical work described in §§ 9 and 10, and for the analysis of the multiple-scale
motions in §§11 to 13. For convenience of description only, the multiple-scale version,

u = (Ucosky— Ucoslz, Vsinlz, Wsin ky), (8.1)

of the first illustrative motion (5.1) is introduced.

Attention will be confined to vectors j in the x-direction in the numerical work and in the study
of the multiple-scale motions. This is not strictly necessary, but it simplifies the expressions and
the analysis, which are complicated enough anyway. Thus

j=7% (.2)

and the operator (j-V) on u-periodic functions is zero. Equation (2.14) with the alternative form
(2.16) used for the operator &, then reduces to the equation,

p*H = — (u-ij)H— (u-V)H+ (H-V)u +AV2H, (8.3)

where ¥ =p+ A2 (8.4)
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The y- and z-components of equation (8.3) do not involve H,, so it is sufficient to confine
attention to these. Then H,, as determined by equation (2.13) in the form,

GH,+V-H =0, (8.5)

automatically satisfies the x-component of equation (8.3).

The equations are derived in terms of the multiple-scale forms (8.1) and (6.4) to (6.6) of the
illustrative motions; the analysis will then include the special case U = V W=k=1[l=1, for
which the motions reduce to the simple forms (5.1) and (6.1) to (6.3).

The changes of coordinates and of variables given by

n==ky, &=Iz

h=(f2) } (8.6)
= (kH,, 1),
= (Uvz, va sz)) (8'7)

are now made. Here v(7, ) has the same forms as the motions ©(y, z) given by equations (5.1) and
(6.1) to (6.3). The y- and z-components of equation (8.3) reduce to

0%h

p*h— (/\kz) — (A = e

oh oh

——i(Uj)vwh—(Vk)vy%—(Wl)vz&-+{(Vk) ag,(Wl)fa} (8.8)

In this equation the quantities Ak% and A/% are the inverse decay time-scales for the length scales
in the y- and z-directions respectively, and Uj, Vk and W1 are the inverse convection time-scales
for convection in the three coordinate directions. These quantities will be kept in this dimensional
form so that the physical significance of the various terms is apparent.

Now h(, §) is written in the Fourier series form

h(9,8) = Zh,,, , exp (imy +inf), (8.9)

where for the first three motions the sum is over all integers m and n, while for the fourth it is over
all pairs with m + n even, corresponding to the form of the motion (6.3). Then for the second, third
and fourth motions, equation (8.8) gives

{p*+m2(z\k2) n2(A2)}h,, ,
% (U]) {hm+1 n+h -1, n+hm n+1+hm n— 1}

+ % (Vk) {hm n+1 " m,n—l} + ’2'” Wl) {hm+1,n - hm—l, n}
+ {%—( Vk) (gm,n+1 +gm,n—1)> %(Wl) (fm+1 n +fm—-1 n)}: (8' 10)

{p* +m*(Ak?) +n2(AP%)}h,, ,
= —3(U)) (Pt ne1 F B, ne1 + Bones nrn + Pon1, n—1}

+ % (Vk) {hm n+l1" m,n—l} + ?n( Wl) {hm+1,n - hm~1, n}
+ {%( Vk) (gm, n+1 +gm,n—1)> %( Wl) (fm+1,n +fm—1,n)}: (8' 1 1)

39 Vol. 271. A.
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(0% +m2(AE2) +n2 (AR,
= Jz‘(U] ) {hm+1; n+l " hm—-l, n—l}
+3m(VE) {hon, nso = B o} + 30 (W) {0, 0 — Bing, 0}
+H{(VE) (m,n+2+ &mn—2)> (WD) (furo,n+Sim—s2.0)}s (8.12)

respectively. For the first motion (5.1), equation (8.8) becomes
{p* +A(m*+n*)}hy
= = %ij(hm+1, 2t hm—l, n hm, n+l1 hm, n—l)

+ %m(hm, n+l" hm, n—l) + %n(hmﬁ-l,n - hm—l, n)

+ %{(gm, n+1 +gm, n—l)’ (fm+1,n +fm—1,n) }, (8' 13)
and the corresponding equations for the second, third and fourth motions in their single-scale
forms (6.1) to (6.3) can be obtained from equations (8.10) to (8.12) by setting U, V, W, k and [
equal to unity. For each of the equations (8.10) to (8.13), the successive terms on the right-hand
sides correspond to convection in the %, y and z directions, to the distortion of B, into B,, and to
the distortion of B, into B,.

In obtaining the numerical results, the symmetry properties of the eigensolutions h,, ,,, indi-
cated for the four single-scale motions in table 2, are used, to reduce the number of independent
components. The rigorous derivation of these symmetry properties is difficult and tedious, and is
postponed to appendix A.

TABLE 2. THE FOUR SINGLE-SCALE MOTIONS

motion ... ) I 11 III v
trailing minor of a,;, [a O K 2 a 0 K @ 0 b k 0 0 0 k 0
shape of ¢, 0 a| [-p « 0 —a| [p « —b 0] |0 « 0 0] |0 «

[x’=—x, [x’:-—x, "x’=x, [x’:—x,
coordinate trans- y =m—y, y = mw—y, y =m—y, y =—y,
formations ]‘z’ = T+2z; ‘lz’ = T+2z; lz’ = T+2z; 12’ =—2z;
leaving motion in- ‘ x = x, lx' = x, ‘ x = x, {x’ = x,
variant y =tz y =z, y =z, y =z
lZ’=Tr—y l2'=y ]_Z'=y 12"=y
dominant eigenvalues real conjugate pairs complex, re- real, repeated
peated
op.erations on the (Rh)m,n = h—m, —n (Rh>m,n = h—m, —ns (Rh>m,n = h—m, —ns (Sh>m,n = <_1>mh—m, -n
eigenvectors giving (Th)m,n = (_1>m+n (Qh)m,n = (gn,m’fn, m); (Qh)m,n = (gn,m:fn,m>; (Qh>m,n = (gn,m,fn,m>
new eigenvectors  (—&_p, ms fon,m)} and, corresponding to  (Ph),, , = (—1)m"
and, corresponding l’*: (f—m,m —g—m,n>
to p*_’_ o (Fh)n,m = (_1)m+n
(Qh)m,n = (gn,m:fn,m> (f—-m,m _g—m,n>
properties of the T =—R, T* =1, Pr=Q?=R: =1, P?=@*=R*=1, Q2 =8=1,
operators P, =I+wT+ RP = PR, RP = PR, QS = SQ
T2+ i T3, RQ = QR, RQ = QR,
where 0t = 1, PQ =—QPR PQ = —QPR
({-oT)P, =0,
Q*=1QP, = P,Q
can confine o T in general; R, Q either R, @ or R, P; S, Q;
attention to eigen- Q, in general; —R, +Q,P -8, 0

I ¢ oT, Q for real p*; {—R, +
vectors 1nvar1ant. where w = —1i or R, +Q, P for real p*.
under the operations +ior +1

(only underlined options
were studied)
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9. NUMERICAL RESULTS FOR THE FOUR MOTIONS

The eigenvalue equations for the four illustrative motions were presented in § 8 above, and the
symmetry properties of the Fourier components are shown in table 2. The numerical method
which was used for finding the eigenvalue p* with the largest real part is described in §10 and
the accuracy of the programs is defended in appendix C. The results are presented here as curves
giving the growth rate,

Rep = Rep* —Aj% (9.1)
A=4 2 1 ¥ i H 1% 5 u

0.15(—
0.10p—
¥4
0.05}—

_—

: ] I | 1
3 i ¥ 1 n 1 2 4
J

Ficure 7. Numerical results giving the growth rate for the first motion for the indicated resistivities A.

as a function of j, for resistivities A equal to all powers of 2 down to 45 or ¢;. The results are as
accurate as can be shown on a graph, i.e. 3 significant figures, except for the lowest resistivity
indicated on each graph: the accuracy and convergence are discussed in §10. A selection of the
numerical results is given in table 4 on page 435.

The numerical results for the first motion (5.1) are given in figure 7. For the largest growth rate
the eigenvalue was always real, as predicted by the heuristic argument in § 7. There is dynamo
action for all resistivities A considered. For fixed A, there are field solutions with positive growth
rate Rep for all values of j below a critical value, which increases as A decreases and takes the
remarkable value 3.0 for A = §4. Further, the growth rate tends to zero as j tends to zero, and for
fixed A has a maximum value. This peak growth rate increases to a maximum and then decreases,
as A decreases; the corresponding value of j continues to increase. The growth rate maximum is

approximately given by 5 =0173, for A=}, j=0.55.

The kinks in the curves for A = J5 and A = ¢ have naturally received considerable study, and
the results are especially accurate in those regions. Using a very small j-interval, the successive
eigenvalue differences vary continuously. The likely explanation for these kinks is that in a region
ina A, j plane for which there is nearly a degenerate eigenvalue, the two eigenvalues take the form

p=x=t (9.2)

39-2
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(cf. the two roots of a quadratic equation). This result follows from the perturbation theory of
non-Hermitian operators. Here y and £ are real functions of A and j, and it appears that £ takes
small values near the point A = 3%, 7 = 0.5, so that the derivative

op _0x 1 _%6{;'
-y TE Ty 0-3)
of the largest eigenvalue is large there.

The results for values of j smaller than those indicated confirm the results of § 3 and the result of
§5 that this motion is a first-order dynamo for at least almost all resistivities. The tensor a,, takes

the form (5.5), 0 0 O
Lgp = [O a 0],
0 0 a
TABLE 3. NUMERICAL RESULTS FOR THE FUNCTION a(A)
A 50 8 4 2 1 3
le| 0.0198 0.124 0.242 0.444 0.655 0.620
A]a] 0.99 0.99 0.97 0.89 0.66 0.31
A 3 1 3 16 £ 73
|| 0.620 0.394 0.266 0.187 0.131 0.085

where a(A) is analytic and real for real A. The exception resistivities are the zeros and poles of
a(A). It was shown in § 3 that p~la)]j as j—o0, (9.4)

using the results of §I, 4. The numerical work confirms this, and results for |a(A)| are shown in
table 3. These confirm the result (5.2) that

a(d) = =21+ 0(A73), (9.5)
and indicate that a(A) has no zeros or poles in the resistivity range considered.

The results for the second, third and fourth motions, in their single-scale forms (6.1) to (6.3),
are shown in figures 8 to 10. There is dynamo action for all resistivities A below critical values,

respectively A=0055 A=08 A=0.2

for the three motions. For fixed A below the critical values, there is a growing field solution for all
J below a critical value. The growth rates are smaller than for the first motion; the approximate
peak values and the corresponding A and j values are respectively,

Rep =0.025, A=1, Jj=0.28,
Rep=10.09, A=1%, j=0.27,
p=010, A=g, j=L6.
The shapes of the tensor «,,, presented in table 2 on page 428, establish that none of the three

motions is a first-order dynamo for any resistivity. This is confirmed by the numerical results,

which show that for fixed A, Rep ~e(A)j2 as j—>0

where ¢(A) can be positive or negative.

For the fourth motion the eigenvalues found were real. For the second they occurred in con-
jugate pairs, in agreement with the symmetry results indicated in table 2, while for the third
motion Im p was always negative for growing field solutions. The form of the exponential term,

exp (pt+ij- %),
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Ficure 8. Numerical results giving the growth rate for the second motion for the indicated resistivities A.
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5 Ficure 9. Numerical results giving the growth rate for the third motion, for the indicated resistivities A.
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in equation (2.8), indicates that for j in the x-direction the growing or decaying field pattern
moves in the x-direction with phase velocity

—Implj.
From the numerical results for the second motion, this phase velocity is in the positive or negative

x-direction for growing fields satisfying the symmetry condition in table 2 with the positive or
negative alternative respectively; the amplitude is between 1.5 and 2.0. For the third motion,

A=1 ' ® Ba
_ ¥
0.10}—
0.08}—
0.06}—
¥4
0.04—
0.02p— \
I | |
! — 1 3 1 2
j

Ficure 10. Numerical results giving the growth rate for the fourth motion, for the indicated resistivities A.

growing fields have a phase velocity between 1.0 and 2.1. These phase velocities are in agreement
with the heuristic arguments of § 7; the maximum amplitude of the x-component of both motions
being 2.

For the second motion, from figure 8, the critical value ofj decreases as the resistivity A decreases
below A = 4. For the third motion this critical value appears to tend to a constant j = 0.42. Also
figure 9 indicates a separate branch of the growth rate curve around j = 1 for A < 5, which is
quite surprising. Finally, for the fourth motion the critical value ofj increases with decreasing A,
and is much larger than for the second and third motions. The maximum growth rate is also
larger, and the near identity of the growth rates in j < § for A < § is remarkable.

10. THE NUMERICAL METHODS
(a) The truncated ergenvalue problem and convergence

In the numerical solution of partial differential equations it is necessary to represent the
unknown function using a finite number of variables. This can be done by making the variables
the function values at a number of ‘grid points’, not necessarily uniformly spaced, with finite
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differences used to approximate the derivatives. Alternatively, the variables can be a finite
number of the coefficients in the expansion of the function in terms of an infinite set of known
functions, with the approximation of setting the remainder to zero.

For an eigenvalue problem like equation (2.14), the set of eigenvalues found numerically will
clearly depend on the number of variables used to represent the function. If there is no clear
evidence of convergence as this number increases, no confidence can be placed in the results.
The number of variables required for the accurate representation of a function will normally be
greater if the function varies on a very small length scale in part of the relevant region, for
example if it is of boundary-layer type.

Numerical study of the kinematic dynamo problem has been handicapped by the fact, proved
by Cowling (1933), that a growing magnetic field cannot be axisymmetric or a function of only
two Cartesian coordinates. Its accurate representation therefore requires a very large number of
variables. Bullard & Gellman (1954) proposed a spherical dynamo model, with a steady non-
axisymmetric motion, and expressed the condition for the maintenance of a steady field as an
eigenvalue equation, with the magnetic Reynolds number as eigenvalue. To represent functions
of the variables 7, € and ¢, they used a finite sum of spherical harmonics for the ¢ and ¢ variation
and represented the radial variation by finite difference methods. The need to store the resulting
matrices in a computer imposed severe restrictions on the number of spherical harmonics and
radial grid points which could be included. Their results seemed slightly encouraging with
regard to convergence, but Lilley (1970) and Gibson & Roberts (1969, using a finite sum of
Chebyshev polynomials for the radial variation), showed that the convergence was only apparent,
and that even at their much better levels of approximation convergence could not be demon-
strated.

It has been shown in this paper how motions which are functions of only two Cartesian co-
ordinates can maintain and amplify fields of the form (2.8) which are functions of all three. In
the corresponding eigenvalue equation (2.14), the eigenfunction H is a function of only two
Cartesian variables, and can therefore be represented much more accurately than a function of
three variables on a computer. The function H(y, z) could have been represented by its values on a
uniformly spaced grid in the y—z plane, using finite differences for the differential operator & in
equation (2.14). This method is used in a study (Roberts 19724) of the dynamo action of axi-
symmetric motions #(r, 0) in a sphere, with field solutions of the form

B = H(r, 0) exp (pt +img),

cf. equation (2.8). It has the advantage that the matrix representing the differential operator &
is sparse. But the eigenvalue problem was in fact solved by representing H(y, z) by a finite number
of terms of the infinite Fourier sum (8.9), and using the Fourier analysed forms of the equations.
With the particular motions (5.1), (6.1), (6.2) and (6.3) considered, the matrix representing & is
still sparse. Further, the truncated Fourier series representation probably gives greater accuracy
in the eigenvalue, with a given fixed number of variables to represent the function H(y, z), than
the use of finite differences.

The exact Fourier-analysed equations (8.10) to (8.13) were therefore approximated by

taking h$), =0 for max{|m|,|n|}>s, (10.1)
for the first three motions, with h,, , complex, and

h$), =0 for |m|+|n| > 2s, (10.2)
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for the fourth motion, with h,, , real, and then ignoring the corresponding equations. The
symmetry conditions givenin table 2 on page 428 were used to reduce the number of independent
components for each value of s. The eigenvalue p¥ with the largest real part was then found, as
described in §10 (5) below, and its convergence with increasing s was studied.

Since all generalized eigenvectors of & satisfy homogeneous linear elliptic differential equations
with infinitely differentiable coefficients and periodic boundary conditions, they are themselves
infinitely differentiable, and therefore

[Py, | = 0(m?+n2)~%, (10.3)

as m?+n®—> o0, for all £. This fact was proved in the earlier paper (Roberts 1969) direct from the
Fourier analysed equations. It indicates that the eigenvalues found numerically can be expected
to converge as s — 0.

Let the eigensolutions h,, ,, and h{), be normalized so that

. 8o,0=1, (10.4)
and define z, and z{9 by the equation

2y = n?rlxﬂfm,n" Igm,n|}a (10'5)

the maximum being over the set S, of values of m and n with |m| + |n| = 2r for the fourth motion
and with max {|m/|, |n|} = r for the others (cf. equations (10.1) and (10.2)). For any eigensolution,
including that with the eigenvalue having the largest real part, z, tends to zero as r increases. This
follows from equation (10.3). Further, for the approximate eigenvalue p} with the largest real
part, it is to be expected that z{ will tend to decrease as r increases up to s, since eigensolutions
with h{) , large for large values of m and n will decay more rapidly. Thus it is to be expected that p¥
will be a good approximation to p* if z, and z{ are small. More precisely, the result,

|pF —p*| = 0(z)?, (10.6)

can be expected as s increases. Approximately, z{) represents the order of magnitude of the effect
of the unit g, , in generating field components at the edge of the square defined by equations
(10.1) and (10.2). The neglected components, of order z, therefore probably have an effect on
o, Of order (z{)% Equation (10.6) is amply confirmed by the numerical results presented in
tables 4 to 6 below.

The magnetic field is increasingly of boundary-layer type as the resistivity A decreases, with the
field varying substantially on a length scale of asymptotic order A* (Roberts 19725). Thus z, and
z{®) decrease to zero more slowly, and increasingly large values of s are therefore required for the
eigenvalues p¥ to converge.

Typical results for the convergence of the eigenvalues p¥ with increasing s are given in table 4,
for a variety of A and j values for each motion. The corresponding values of zZ) are also shown, and
confirm equation (10.6). Because of this result, most values of A and j were studied for one value
of s only; if ) was less than % the result was regarded as satisfactory.

It was found that the value of s required for an accuracy of 3 significant figures in the dominant
eigenvalue was practically independent ofj for fixed A; only when j took values substantially greater
than one did it start to increase. The values of s which were used for each motion and each resis-
tivity are shown in table 5, with corresponding order of magnitude for z{, Where field solutions
had a large growth rate, z decreased more rapidly; this is to be expected, since the denominators
in the series (11.13) for ¢,, are much larger.
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TABLE 4. CONVERGENCE OF THE EIGENVALUES

motion A Jj s Rep, Imp, 2z
I 1 1 3 0.0840389 10-3
7 0.0840389 10-
13 0.0840389 10-20
3 3 3 0.166 0.055
5 0.169165 0.007
7 0.1691710 0.0006
P - 1 8 0.1457 0.025
<« 9 0.14613 0.013
o & 1 11 0.1324 0.027
= 13 0.13297 0.011
> >~ II 3 1 : 0.023347 +0.4676 0.19
olm 5 0.023345 +0.463825 0.023
= 1 1 3 0.022 +0.53 0.38
O 7 0.01593 +0.4768 0.02
O 111 3 3 4 —0.09832552 —0.426276455 10-3
=wv 5 ~0.0983255641 —0.426276464 10-4
o 7 —0.0983255646 —0.426276464 10-7
3z 2 0.294 6 0.0638 —0.5517 0.069
=0 8 0.06415 —0.5521 0.024
== & 1 8 0.0497 —1.934 0.09
O&:’ & & 1 8 0.045 —1.98 0.32
L s 1 8 0.00550 —0.5002 0.27
oz 10 0.00627 —0.5006 0.20
T 15 0.00671 —0.5015 0.066
&= s A 8 0.0000651 —0.06251 0.35
10 0.0000604 —0.06254 0.26
15 0.0000607 —0.06257 0.083
v 3 1 6 —0.1556805 0.0043
7 —0.15567850 0.0009
8 —0.155678597 0.0002
& 2 14 0.000189 0.17
15 0.000206 0.10
20 0.0001984 0.025
25 0.0001987 ?
7is A 20 0.000065 0.47
30 0.000100 0.14
//)1
<\//\:j TABLE 5. THE VALUES OF § USED FOR EACH RESISTIVITY,
- AND THE CORRESPONDING Zz) MAGNITUDES
§ s motion A= 2 1 3 1 ¥ G B
olm I = 2 2 3 4 5 8 9 13— —
= Z9 = 0.003 0016 0.007 0007 0008 0.003 002 00l = — —
= O I 5= 2 3 3 4 5 7 8 — —_ =
O Z9 = 0.006 0.002 0015 0015 0.015 0.02  0.08  — S —
v I s = — 5 5 5 6 8 8 8 15 —
29 = — 10-6 10-4  0.002 0.008 0.003 003 015 007 —
v 5= — 5 5 6 8 10 14 14 — 30
29 = — 10-¢  0.001  0.004  0.007  0.02 0.02  0.15 — 014
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Finally, no attempt is made here to describe the growing fields in detail, or to evaluate and
display the sums of the finite Fourier series. But to give some slight idea of the extent of the develop-
ment of thin layers, and of the pattern of convergence, results for z{¥, for a variety of cases, are given
in table 6.

TABLE 6. ORDERS OF MAGNITUDE z) OF THE FOURIER COMPONENTS OF THE
MAGNETIC FIELDS

A

< A s 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
R I B 8 1 0.17 0.021 0.001 10-¢ 10-¢ 10— 10-* 10-t  — — —_— — — —
: F 7 1 029 012 005 0.02 0007 0.002 0.001 — — — — — — —
>> & 1 13 1 045 032 021 014 0.11 008 0.06 004 0.03 002 0015 001 0.01 —
O[—LI 50 $i; 3 1 102 10-% 10— — — — — _ _ — — _ _
M= %+ 5 1 070 0.34 016 0.068 0.023 — — — — _ _ _ _ _
m'—* & + 8 1 084 055 037 0.27 019 012 0.08 007 — — — — — —
IUII 1 0179 4 1 0.45 0.067 0.007 0.001 — — — — — — — — — —
©) ¥ 1+ 6 1 036 014 0.073 0.028 0.009 0.002 — — — — — — — —
=w % 3 8 1 042 0.23 0.14 0.10 0.070 0.045 0.030 0.025 — — — — — —
& 0+ 8 1 050 047 042 034 027 022 018 0.18 — — — — — —

V 1 i 14 1 053 046 0.14 0.063 0.016 0.0056 0.001 10-¢ 10-* 105 10-% 107 10-8 10-°

& wiowl4e 1 023 098 035 0.89 035 0.69 030 0.48 022 032 0.14 022 0.07 0.16

T 1078 14 1 0.027 1.00 0.046 0.999 0.058 0.997 0.062 0.994 0.058 0.989 0.046 0.983 0.027 0.979

(b) The ergenvalue method

The method of inverse iteration (see, for example, Wilkinson 1965, pp. 619, 628) was used to
find the eigenvalue with the largest real part, for each matrix derived above. The finite-dimen-
sional eigenvalue problem can be written as

PHILOSOPHICAL
TRANSACTIONS
OF

Px = px, (10.7)

where Pis an N x N matrix, complex-valued except for the fourth motion, and & is the vector of
JSm,n and g, , components, ordered as described below. With an initial approximation,

. . {Do> %o} (10.8)
to the eigensolution, the vectors,
//j]f?ﬂ\ Xy = en(P_pOI>_1xn—1 (10°9)
e = ¢,65...6,(P—po)~"%,, (10.10)
§ > are evaluated, with ¢, defined so that Zo0=1, (10.11)
~

2 E say, at each stage. The iteration is stopped if for any value of n,
E 8 | %, — %, 4] <6, (10.12)
=w where | #| denotes the sum of the moduli of the components and ¢ is a small test parameter which

was usually chosen as 10~19 since the computer worked to about 12 significant figures. Using
equations (10.9) and (10.12), with § = 0 and «, = «,

Px = (po+6,) %, (10.13)

and the eigensolution has been found. Otherwise the iteration (10.9) is stopped at a certain value
of n, which was usually 20, and (Doten %,} (10.14)

PHILOSOPHICAL
TRANSACTIONS
OF



http://rsta.royalsocietypublishing.org/

"'\
A\
JA §
A A

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

A\

y \

Py

THE ROYAL A

A A

N

0\

SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

TWO-DIMENSIONAL SPATIALLY PERIODIC DYNAMOS 437

is used as the new approximation (10.8) to the eigensolution. The process above is then repeated
until convergence is obtained.
In the analysis of the method, it will be assumed that the matrix P in equation (10.7) has N

complex eigensolutions, {p, 80 (j=1,2 N)
bt B ] b

with the eigenvectors 49, chosen to satisfy equation (10.11), independent and complete. This is
not so in general unless generalized eigensolutions are included (cf. § I, appendix B); the extension
of the analysis below to the general case is straightforward. Then, with

%, = Zad) a, (10.15)
equation (10.10) implies that  af’ = €, 6,...¢,(p9 — py)—"al, (10.16)

and the factors €, are determined by the conditions,
N
> dP=1, (10.17)
i=1

from equation (10.11). So ad—>0, as n->oo, (10.18)
unless p is one of the eigenvalues closest to p, in the complex plane. If p® is the closest,
adP—>1 as n-—>oo, (10.19)

as required. Even if 20 iterations do not give convergence, the new initial approximation (10.14)
will probably be very good. It is clear that the first eigenvector approximation &, need not be an
approximation at all; in fact &, was frequently zero except for the g, , component which was
unity.

In order to evaluate (P—poI)~1%,_, in equation (10.9), the matrix P— p,I is expressed, using
Gaussian elimination without interchange, as

P—p,I=LU, (10.20)

where L is lower triangular with unit diagonal, and U is upper triangular. The components are
ordered in such a way that P has the banded structure,

P;=0 for |i—j| > B,

with minimum band-width 2B + 1. Only this band of P — p, 1 is stored in the computer, and in the
triangular decomposition the components are replaced by the corresponding components of U
and the corresponding non-diagonal components of L. The triangular decomposition is done just
once, and requires a number of arithmetical operations of order NB2. For each step of the iteration,
the solution of equation (10.9), in the form,

%, =€, UL x, _,, (10.21)

requires a number of operations of order 2NB. Thus for B = 40, the triangular decomposition
takes a time comparable with that for 20 iterations.

The initial approximations p, to the eigenvalues were chosen as follows. If the same problem
had just been studied with a smaller s, the result was used. Otherwise if, as was usually the case, a
succession of values of j were being studied for fixed values of A and s, the result with the previous
value of j was generally used. Sometimes the real part of these previous values was slightly in-
creased, but this precaution was found to be unnecessary. The above scheme usually gave very

40-2
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rapid convergence, with z typically between 3 and 7. The initial values for each A value had a large
positive real part, to be sure of finding the eigenvalue with the largest real part. It was easy to find
other eigenvalues, and to follow their variation with j for fixed A; it was by this means that the
separate branch nearj = 1 for the third motion, shown for A = J;in figure 9, was found. For A = 4
and ¢4 only the values of the growth rate at j = 1 are shown; for A = ¢ the result for Rep is
probably only accurate to within 0.01 or so. An extensive search did not reveal any such branch
for the other motions; the results presented almost certainly give the eigenvalues with the largest
real part.

No particular difficulty was experienced over eigenvalues roughly equidistant in the complex
plane from the initial approximation p,. The iteration described always converged to some eigen-
value eventually, after going through a sequence of new initial approximate eigensolutions of the
form (10.14). For the fourth motion real eigensolutions were assumed, although with equation
(8.13) complex eigensolutions in conjugate pairs are also possible. For certain cases, with negative
initial approximations p,, the eigenvalues closest in the complex plane were apparently such
complex pairs; in such cases there was no sign of convergence according to equation (10.12) until
the new initial approximations to the eigenvalue, determined according to the form (10.14), had
their closest eigenvalue real.

The inverse iteration eigenvalue method as described is readily adaptable to matrices so large
that the band cannot all be held simultaneously in main storage, and additional storage devices
have to be used. The process (10.20) of triangular decomposition only uses B+ 1 rows of the
matrix at a time, and the process (10.21) only uses one row of L at a time and then one row of U at
a time. Thus with the band of F;; components satisfying

li-jl < B

stored by rows, only a relatively small number of rows need be in main storage at a time. The
Cambridge University Titan computer, used during 1967, gave 35000 words of storage, with 12
significant figures held, and a 5 us operation time. There was no system to give the programmer
virtual storage implicitly, and programs had to be written to transfer numbers to and from
magnetic tape during the processes of setting up the matrix, of triangular decomposition, and of
the n applications of equation (10.21). This was done for the third and fourth motions only, and
typical results are described in table 4 on page 435. The largest matrices studied were real
matrices of order 1861, with band-width 129, for which eigenvalues were found in eight minutes,
excluding the time for tape transfers on a time-shared machine, and complex matrices of order 481
with band-width 68, for which eigenvalues were found in five minutes computation time. The
disadvantage was that the execution times, with tape transfers included, were five times as long,
and the additional information to be gained by taking the resistivities down another factor of 2 was
not felt to be worth the computing time which would have been involved.

Finally, the accuracy of the eigenvalue method was always checked by evaluating the terms in
each component of P& —p«, and dividing their sum by the sum of their moduli. The result was
always 1010 or smaller. Further, the eigenvalues obtained from widely differing initial approxi-
mations (10.8) agreed to 10 significant figures. Thus no difficulties were experienced with the
method due to not using any interchange in the Gaussian elimination for the triangular decompo-
sition (10.20), in spite of Wilkinson’s warnings (1963, p. 629).
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11. THE TENSOR ¢,

It is shown in § 6 that the three additional illustrative motions (6.1) to (6.3) are not first-order
dynamos for any resistivity A. The determinants of the symmetric parts of the trailing minors of
the tensors «,,, shown in table 2, on page 428 are respectively negative, zero and zero, and thus
from § 3 there is no dynamo action to first order in the components of j. The numerical work shows
that all three motions act as dynamos to higher order in the components of j, for sufficiently small
resistivities, but it has not been found possible to prove this analytically. The multiple-scale
versions (6.4) to (6.6) of the three motions have therefore been introduced, and their dynamo
action to second order in j is established in §§12 and 13. The analytic methods required are
developed in this section.

In order to demonstrate that a first-order analysis for small j is reasonable, it was shown in the
first paper, in §I, appendix D, how the eigensolutions {p, H(x)} can in principle be found to
second and higher orders in j. But the method is of little practical value, and is not used here.

Attention is confined to vectors j in the x-direction, so thatj = j&, and the eigenvalue equation
is used in the Fourier analysed forms (8.10), (8.11) and (8.12) for the three motions. These equa-

tions are written as (% +m2(AR2) + (XD} b,y = {UHY e (11.1)

The set of Fourier components h,, ,, is now partitioned into the zero component h,, o, denoted by
hA, and the remaining components, denoted by h’. The notation is natural since h4 and h’
represent respectively the average and oscillatory parts HA and H'(«) of H(#), according to
equations (2.2) and (2.4), (8.6) and (8.9). In fact

hoo = (fo,0080,0) = (KHy, IH). (11.2)

With this partitioning of h,, ,,, equation (11.1) can be partitioned as
p*hA = UAR, (11.3)
{p* + m2(AR2) +n2(A2)}h' = U"h' + U hA . (11.4)

Suppose now that equation (11.4) is soluble for h’, the set of h,, ,, components with m and » not
both zero, as a function of A, and p* and as a linear function of h4 = h ;. Then substitution in

equation (11.3) gives the equation PE(A), = §op(hD),, (1L.5)

where ¢, is a complex 2 x 2 matrix, a function of A, jand p*. This eigenvalue problem is analogous
to that defined by equations (3.1) and (3.2); in fact

| — %39 - (k/l)“ss] .
=1 +0(s2). 11.6
P =Y [(l/k)“zz X3 U (11.6)

The &/l and [/k factors appear because of the relation (11.2) between h# and HA.

The tensor ¢,, in the eigenvalue equation (11.5) is itself a nonlinear function of the eigenvalue
p*. The equation is nevertheless applicable in two senses. First, deductions concerning the shape
of ¢, for the three motions are made in §12, and extended to general values of A,j and p* in
appendix B. These results are used to show that for the third and fourth motions every eigenvalue
is degenerate, with an even number of eigensolutions. Corresponding deductions for the second
motion simplify the analysis in §13. Secondly, the detailed application of equation (11.5) is
practicable if for 1p*| <, (11.7)
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where ¢ is a constant, ¢, has two differentiable eigenvalues ¢(p*), satisfying

9] <o [dgp/dp*| < 1. (11.8)
In this case, the iteration defined by

=0, pnu=(pn)s (11.9)

converges very rapidly to the two eigenvalues p* with modulus less than ¢, and pf is a very good
approximation. This iteration is used to demonstrate dynamo action in §13. For the second and
third motions, pf is dominated by its imaginary part, and it is necessary to consider p; to get an
asymptotically valid approximation to the real part.

It remains to find a method for the solution of equation (11.4), and the determination of the
2 x 2 tensor ¢,,. Suppose that the series

h = S h, (11.10)
=0

(7]

is uniformly convergent, with h,, defined by the relations

hy = {p* + m*(AR?) + n2(AP)} 1 U ’AhA,}

h.,., = {p* + m2(AR2) + n2(AR)} 1 U"h.,. (11.11)

Then h' is the unique solution of equation (11.4), and equation (11.3) can be written as

PERA = 3 WA [{p* +mR(AK) +n2(AR)} Ao (5% + mE(AR) +n2(AR)} L UARA, (11.12)
0

W=

The operators #A’, #” and A are determined by the right-hand sides of equations (11.3), (11.4)
and (11.1) in the forms (8.10) to (8.12). Thus

(7]

s

¢qr= % 2 w—1 = ’ (11.13)
0= O TT(p* +m3(AR2) + n2(AL2)}
i=1

where Y, denotes a sum over all ‘closed sequences’ of » ‘interaction steps’, from a vector
(0)

component f, o or g, o (according as 7 is 1 or 2), through a sequence of components

fmi,ni or  Zmy,n; (i=1329~--’w_1)a

to a component f; 4 or g, o (according as ¢is 1 or 2). The integers m; and »; cannot both be zero for
any 7. Each interaction step is an x-, - or z-convection, or a distortion of a g-component into an
f-component or vice versa, as allowed by equations (8.10), (8.11) or (8.12), and s, is the corre-
sponding multiplying factor. Thus for the second motion, according to equation (8.10) with

m =3 and n = 4, s5; is $(Vk) for the distortion g 3—f3 4 and is —2(W1) for the z-convection
W v w
J2,4=>f5,4- The symbols -, -and —are used to indicate whether a convective interaction step is

an x-, y- or z-convection in the obvious way. A typical closed sequence of interaction steps, for the
second motion, is f o= g1,0 = &o,0; the corresponding contribution to ¢, is

W) (-3i)),
from equation (8.10).

Sufficient conditions for the rapid convergence of the series (11.10) (11.12) and (11.13), for
the three motions, are derived in §13. Equation (11.13) is also used in §12, in deriving results
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about the shape of the tensor ¢,,. It is shown in appendix B that these results apply even when the
series (11.10) is not convergent.

12. THE SHAPE OF ¢, FOR THE THREE MULTIPLE-SCALE MOTIONS

For the three multiple-scale motions (6.4), (6.5) and (6.6), the 2 x 2 tensor ¢,,, defined in §11
as a function of A, j and p*, takes the respective forms,

K U

bkl (12.1)

e O

0 xl’ (12.2)
and [k O]

O K H (12'3)

where the functions « are of course different for the different motions. These results are estab-
lished below for cases where the series (11.13) for ¢, is convergent; they are extended to the
general case in appendix B.

To prove the equality of the diagonal terms, consider the one-to-one correspondence in
equation (11.13) between closed sequences of interaction steps contributing to ¢;; and closed
sequences contributing to ¢,,, defined by taking the sequence of (m,, n;) values in reverse and
replacing all f~components by g-components and vice versa. Thus in an (m,n) diagram a con-
vection step in one direction becomes a convection step in the other direction, and a distortion
step from an f~component to a g-component in one direction becomes a distortion step from an
J~component to a g-component in the opposite direction in the (m,n) diagram. From equations
(8.10) to (8.12) the multiplying factor s; is unaltered except for a change of sign with y- and
z-convections and with fourth motion x-convections. It is now established, separately for the
three motions, that the corresponding contributions to ¢, and ¢,, are equal. Clearly the deno-
minator products in equation (11.13) are identical, it is therefore only necessary to prove that the

[0}
signs of the products [] s; are the same. For the second and third motions, this requires that the
1

total number of y- and z-convection interaction steps is even; for the fourth it requires that the
total number of convection steps is even.

For the second motion, consider closed sequences of interaction steps, with an odd total of
y- and z-convections, contributing to a particular term of ¢,, in equation (11.13). Further, con-
sider the one-to-one corresponedence between them defined by just changing the sign of n; in all
the fy, n; and g, ,, components. This is one-to-one since the »; cannot all be zero. The corre-
sponding denominators in equation (11.13) are identical; so are the numerators except for a sign
change for y- and z-convections. So the total contribution is zero, and closed interaction step
sequences with an odd number of y- and z-convections are negligible. The tensor shape (12.1)
follows. Further, contributions to « are even iniUj, and contributions to # and v are odd, since the
total number of interaction steps is even.

For the third motion, x-convections change m +n by an even number, while distortion inter-
action steps and y- and z-convections change it by unity. The number of distortions in closed
interaction sequences contributing to ¢; or @,, is even. Thus so is the total number of y- and
z-convections, and ¢, and ¢@,, are equal.
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For the fourth motion, x-convection interaction steps change m by unity and leave m—n
unchanged, while distortions and y- and z-convections change m by an even number and change
m —n by two. Therefore there are an even number of x-convections, an even number of distortions,
and an even number of y- and z-convection interaction steps, in any closed interaction step
sequence contributing to ¢;; or ¢,,. Thus the diagonal terms are again equal.

To prove that the off-diagonal terms of ¢, are zero for the third and fourth motions, the closed
interaction sequences contributing to ¢,, in equation (11.13) are divided into pairs under the
same one-to-one correspondence, with the sequence of (m,, n;) values taken in reverse and with

Jf~components replaced by g-components and vice versa. The denominator products in equation

TABLE 7. INTERACTION STEP SEQUENCE CONTRIBUTION TO @,

motion ... ... 1I 111 v

N

s h)
term of ¢, ... b1 = Pa o = P = P 11 = Do
=K =K

=K Py = v =

numbers of interaction
steps in equation (11.13)

x-convections even odd positive even
y- and z-convections even even even even
distortions even odd even even

(11.13) are identical, so it is only necessary to prove that the s; products change sign. For the
third motion this requires that the number of y- and z-convections is identically odd, while
for the fourth motion the total number of convection interaction steps must be proved odd.
These two facts follow immediately from the arguments of the last two paragraphs, since the
number of distortions is odd. Thus ¢,, is zero. Similarly, ¢, is zero, and the shapes (12.2) and
(12.3) have been established for the third and fourth motions.

The shapes of the trailing minors of the tensor «,, for the three multiple-scale motions can be
now deduced from equations (11.6), and are

[‘(’) 2], (12.4)
[_2 g] (12.5)
and [g ?)]’ (12.6)

respectively. The off-diagonal terms are zero for the second and fourth motions since closed
interaction step sequences include an even number of x-convections and thus give an even number
of factors Uj in equation (11.13). Thus the diagonal terms of ¢, are zero to first order in j.

The above results concerning the numbers of the different kinds of interaction steps in sequence
contributing in equation (11.13) to the different terms of the 2 x 2 tensor ¢, are summarized in
table 7.

13. ANALYTIC RESULTS FOR THE ADDITIONAL ILLUSTRATIVE MOTIONS

Using the results of §§11 and 12, it is now proved that each of the multiple-scale forms (6.4),
(6.5) and (6.6) of the three additional illustrative motions (6.1), (6.2) and (6.3) can give dynamo
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action in a certain limit. The stages of the analysis are summarized in table 8 for the three motions.
The first stage is to establish conditions on the relative magnitudes of the inverse time-scales
AR?, A2, Uj, Vk, Wland p* sufficiently strong for the series (11.10) for ' to converge very rapidly,
but sufficiently weak that dynamo action is not excluded. With the assumptions,

Ak% < AR, (18.1)

1p%] < BAR2 (13.2)
(cf. equation (11.7)), the denominators p* +m?(Ak?) +n?(Al%) in equations (11.11) to (11.13) are
dominated by the term #2(A/%) unless z is zero. Thus the assumptions,

UjjAe < 1, (13.3)
VE/A < 1, (13.4)
WA < 1, (13.5)

ensure that for interaction steps in equation (11.11) ending at field components with z non-zero
the resulting field component is much less than the original. The corresponding conditions,
Uj|Ak? < 1, etc., are not imposed, so for interaction steps ending at field components with n = 0,
the resulting field component may be much larger than its cause. Instead, the weaker condition
is imposed that for any sequence of interaction steps starting and finishing with g-components
with # = 0 or with f~components with # = 0, the product of all the factors involved is much less
than one. It is only necessary to consider short sequences, since the product of the factors for
longer sequences is always expressible as the product of short sequence factors and of factors of the
form (13.3), (13.4) or (13.5). The conditions (13.1) to (13.5), together with these further con-
ditions, will imply that for any natural norm,

[[{p* +m*(AR%) + n*(AB)} 1 2"]e e < 1 (13.6)

for sufficiently large w, thus ensuring the rapid convergence of equation (11.12).

Sequences of interaction steps going from a g, , component to an f,,, , component and not
involving convection in the #-direction (i.e. only involving mutliples of Vi or W) are ignored in
this analysis, since the sum of the contributions from all such sequences is identically zero. For
example, the factors corresponding to the two sequences for the second motion

v v
84,0 ">g4,1”>f4,o; g4,o—>f4,1 /1,0

(V denoting convection by the y-component), are, from equations (11.11) and (8.10),

—4(3Vk) 1Vk
[P T 1606 + (A} {p* + 16(AkD) )’
1Vk 4(1VE)

{p* +16(Ak2) + (A2)} {p* + 16(Ak2)}’

and their sum is identically zero. The reason for this identical cancellation follows. Set Uj to zero
on the right-hand sides of any of the equations (8.10) to (8.12), and define % appropriately in
equation (11.1). Then the condition, (1) By = 0, (13.7)

for some particular m and », implies that for any 7 and s,

(r,8) {Uhp, n}r, s = O. (13.8)

41 Vol. 271. A,
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TABLE 8. SUMMARY OF THE ANALYTIC RESULTS FOR THE MULTIPLE-SCALE MOTIONS
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Thus all successive components generated according to equation (11.11) from a field component
satisfying equation (13.7) also satisfy equation (13.7). This is the required result. It also implies
the cancellation of contributions to ¢, in equation (11.13) involving no x-convection interaction
steps. Equation (13.7) implies that the corresponding Fourier component of V- H is zero, and the
result (13.8) is related through equations (8.9) and (8.6) to the vanishing of the divergence of the
right-hand side of equation (8.3) when x-convection is ignored and V- H is zero.

The inequalities required for the convergence of the series (11.10), (11.12) or (11.13) for the
three motions are shown, with the interaction step sequences which lead to them, in table 8.
Those which apply to all the motions are in the first column. It is fairly easy to show for each
motion that these conditions are sufficient, and imply that for different interaction step sequences
the products of the factors involved are also much less than unity.

Theseinequalities also imply the rapid convergence of the iteration (11.9) for the eigenvalue p*.
The tensor ¢, in equation (11.5) is itself a nonlinear function of p*, and the conditions (11.8)
were shown to be sufficient for the rapid convergence of the iteration. Now the eigenvalues of the
tensor ¢, in its most general form (12.1) are

¢ = k(). (13.9)

From equation (11.13), the sequences of interaction steps contributing to the terms «/A%? and
uv|(Ak2)? are precisely of the form of the sequences of interaction steps mentioned above after
equation (13.5); since they start and finish at f; , or at g, o, and the number of factors A4? in the
denominator is right. The corresponding contributions are therefore much less than one. So

¢ < AR (13.10)

Similarly, differentiating equation (13.9), and the denominators in equation (11.13) for the
terms «/Ak% and pv[(Ak?%)2%, with respect to p*,

d¢
a* <1,
where use has been made of the result,
e %+ mEUR) 2B = | = (9 4 mt () 4 (A

< s 0% +ma(03) 2],

which follows from equations (13.1) and (13.2) for m and z not both zero. Thus the conditions of
equation (11.8) are satisfied, with ¢ equal to $A%2, cf. equation (13.2).

Table 8 shows all the contributions to the tensor ¢, which may be dominant with the con-
ditions already applied. One typical closed interaction step sequence is shown for each contribu-
tion, with the total contribution and the total number of similar closed interaction step sequences,
obtained from that shown by reflexions and possibly by putting the interaction steps in a different
order. Sequences going from an f; ,, or g,, , component to a g, ,, or f,, o component without in-
cluding any x-convections are ignored, from equation (13.8), and the restrictions shown in
table 7 on page 442 are also applied. The denominators in equation (11.13) are represented by
their dominant terms, using equations (11.8), (11.9) and (13.1), so that

(% +m2(M2) +n2(AR)}1 = (m2(A2)}L for n + O, }

= {m?(Ak%)}-1 for n=0. (13.11)

41-2
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This is a good approximation. However, if p* is dominated by its imaginary part, its real part

may be inaccurate if equation (13.11) is used. This was pointed out after the description of the
iteration (11.9). The approximation,

{p* +m2(Ak2) +n2(A2)}1 = {n2(A2)}1 for n 0,

ilmp*

i:{mz(/\kz)}“’{l—-m} for n=0

(13.12)

is sufficient in obtaining the dominant terms in ¢,, and in p* for the motions considered here.

The next stage is to apply the iteration (11.9) to obtain the eigenvalue p*, and to establish
further conditions for the three motions so that its real part is positive. With the final condition
that Aj2is much less than Re p*, dynamo action is assured. For all three motions there is a negative
contribution to « from two x-convection steps, the x-component of the motion accelerates the
natural diffusion decay rate Aj2. The extra conditions for growth shown in table 8 ensure that the
regenerative terms are sufficient to overcome this. The analysis is easiest for the fourth motion,
with ¢,, diagonal and with real equations. For the third motion ¢,, is complex diagonal, and the
difficulty is greatest for the second motion.

For the fourth motion the regenerative term in « = p*, and the extra condition for it to be
dominant, are shown in the table, with the result for the growth rate. It may be seen that dynamo
action requires that the product (Vk) (WI) is positive; if this product is negative the inequalities
already assumed exclude dynamo action.

For the third motion there are two negative contributions and an imaginary contribution to
k = p¥, asshownin table 8. It appears at first that dynamo action is excluded. But if the imaginary
contribution is larger in absolute magnitude than the other two, its change may be important
whenequation (13.12) isused instead of equation (13.11) for the denominators in equation (11.13).
Clearly in terms of the iteration (11.9), the real and imaginary parts of pf* are dominated by the
terms in the table. But from equation (13.12) the second contribution to x = p¥ is

() (V) (W), _iTmp
- e (13.13)

and the added real term is
(ImpF)2  (U))*(Vk)2(WD)?
(Ak2) (k2B (AR)2

(13.14)

Further steps of the rapidly converging iteration (11.9) do not affect the dominant terms. The
additional inequality required for growth, and the resulting dominant terms in Rep and Im p,
are shown in the table. It is interesting that the motion is still a second-order dynamo even if the
signs of U, V or W are changed.

For the second motion it will be assumed at first that the product (Vk) (W) is positive, since if
the product is negative the motion (6.4), with a change of origin, is a multiple-scale version of the
first motion (5.1). Then the dominant contributions to k are negative, and the contributions to x
and v are imaginary and all have the same sign. Substituting in equation (13.8), pi has the

e (U [, (VR (WD) . TR (WD) [, . (VE) (W)
h:‘mkz){l ) wz)}i‘«/ [ () (A1) :”2@/@) MH‘ (13.15)

dominant terms,

Using the additional assumption
(Vk) (W)

o > L (13.16)
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(cf. the condition for growth shown in the table), the dominant terms are

I _ Mg vk) (wn) i (4)) (V) (W)
LT T3 OREAR) T2 (W) (AR

(13.17)

As with the third motion, the additional contribution to the real part of p& when equation (13.12)

is used is (Impi)? _ 1 (U))2 (VR (WD)
k) 27 (AR (AR)E °

(18.18)

and is dominant, with the inequality (13.16), Further steps of the iteration (11.9) do not affect the
dominant terms in p*, which are shown in the table.

Itis interesting to study the case for the second motion where the product (Vk) (WI) is negative.
If

(Vk) (WD)
et | <
equation (13.15) becomes pE=+Uj A/ ‘ E/I\/lfg) ((%12)) _ 2( ([i]k):) ,

and the motion-resistivity combination is a first-order dynamo, giving growing solutions for all
. : i
sufficiently small 5. However, 1 (Vk) (W)

) (| >

the analysis of the previous paragraph and the results in table 8 apply, and there is dynamo action
to second order in j if Aj2 is small enough.

The final stage of the analysis is to demonstrate that the inequalities are consistent by giving a
one-parameter limit X — co in which they are satisfied. Thus if

Wi = X5, A2=XS,

the inequality (13.5) is asymptotically satisfied in the limit. A particular realization of the in-
equalities, chosen so that the spectral radius (13.6) is of order X~, is given for each motion at the
end of table 8. The results there for Rep and Im p are asymptotically valid as X— co.

14. SIGNIFICANCE OF THE RESULTS

It remains in this concluding section to discuss the relevance of these results to further work on
the dynamo problem.

Cowling (1933) proved that axisymmetric magnetic fields and fields independent of one
Cartesian coordinate cannot be amplified or maintained by magnetohydrodynamic dynamo
action. It has been shown by analytic counter-examples that the further statement that a motion
independent of one Cartesian coordinate cannot give dynamo action is false.

Numerical results demonstrating dynamo action with convincing convergence have been
obtained by making use of three devices. The first is the use of motions independent of the Car-
tesian coordinate ¥, so that in the eigenvalue equation (2.14) the eigenfunction H is a function of
only the coordinates y and z, and its accurate numerical representation requires fewer variables
than a function of all three Cartesian coordinates would require. The second is the removal of
boundaries, so that the free decay rate — Aj2 can be arbitrarily small; the natural decay rate for an
insulated sphere of radius R is —m2A/R? and the rapid motions required to overcome this by

41-3
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dynamo action imply large magnetic Reynolds numbers and extra convergence difficulties. The
third device is the introduction in § 10 5 of an eigenvalue method which does not involve the storage
of the whole matrix and which is very fast. Time-stepping equation (2.10) would have involved
even less storage, but much more time would be required to get an accurate growth rate.

Not all of these three devices are essential for convergence. Indeed in the earliest computations
the eigenvalue method used the whole matrix. Further, the three-dimensional motion,

u = (cosy+sinz, cosz +sinx, cos ¥ +siny), (14.1)

is a first-order dynamo for at least almost all resistivities; the accurate growth rates could be
found easily by the method of this paper, making use of the symmetry, for resistivities A down to say
1 or 1. So the first device is not necessary. And it has now been established numerically that a
steady axisymmetric motion u(r, #), chosen to be analogous to the first motion (5.1), can maintain
and amplify indefinitely a non-axisymmetric magnetic field in an insulated sphere (Roberts
1972.a). So if the other devices are used the second is not essential.

The results of this paper are relevant to the dynamo action of turbulence, as studied by Steen-
beck & Krause (1966, 1969); Steenbeck, Krause & Rédler (1966), Krause & Steenbeck (1967),
Radler (1969a, b) and Moffatt (19704, b). They have analysed the dependence of the mean
electromotive force (v x B’) on B and its derivatives, with isotropic turbulence and where there
are preferred directions, using symmetry arguments, and for large resistivities A using analysis
comparable to that in §§3, I,5 and I,appendix A. If the turbulence is influenced by rotational
motion with angular velocity &, and has a preferred direction I, then

VXB =—&Q-DB+pIxB)—9(VxB)+..., (14.2)

where &, £ and % are scalars; the first term represents the isotropic symmetric part of the tensor
&,s, and the second term the antisymmetric part, cf. equation (3.2). Thus the first term leads to
first-order dynamo action, the second to a phase velocity S of the growing magnetic field, and the
third, with  positive, implies enhanced diffusion. These effects are present with the illustrative
motions considered here.

Finally, the numerical results apparently provide an approach to the detailed study of dynamo
action at very small resistivities A, that is, at large magnetic Reynolds numbers. Weiss (1966)
demonstrated numerically that for small resistivities steady two-dimensional cellular motions will
distort a uniform magnetic field so that the magnetic flux is concentrated at the edges of the cells
in thin ropes. This flux concentration effect is likely to occur in a modified form in three-dimen-
sional situations as well, and is probably important in stars, where the resistivity is very small. The
dynamo models of Braginskii (19644, ) involve large magnetic Reynolds numbers, but since the
motions are dominated by their axisymmetric toroidal part, ropes of magnetic flux do not arise.
No attempt has been made here to show the form of the field eigensolutions, but for small resis-
tivities they do have rope structure. With j = 0 the x-component of the motion can be neglected
infinding the - and z-components of the magnetic field. But the y- and z-components of the motion
represent a cellular two-dimensional flow, with stream function cosy —cos z for the first three
motions, and § (cos 2y — cos 2z) for the fourth, cf. figures 1 to 4. Thus flux ropes arise as in Weiss’s
calculations. In a future paper (Roberts 1972 6) it will be shown that the ropes have a thickness of
order A? as A tends to zero, and for the first motion (5.1) the asymptotic behaviour of the function
a(A) in equation (5.5) will be studied, and compared with table 3.
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APPENDIXES
A. Symmetry arguments for the Fourier-analysed equations

Table 2 on page 428 shows the symmetry properties of the eigensolutions h,, ,, and of their
truncated approximations k(. (cf. equations (10.1) and (10.2)), which were used in the numeri-
cal work to reduce the number of independent Fourier components. Operations on the Fourier
components which generate a new eigensolution from a given eigensolution are found, and it is
shown that it is sufficient to confine attention to eigensolutions invariant under certain such
operations, as indicated in the table.

The heuristic arguments in § 7 suggested that the dominant eigenvalues p are respectively real,
complex in conjugate pairs, complex with negative imaginary part, and real, for the four motions,
so that the field pattern is stationary only for the first and fourth motions.For eigensolutions with
hA non-zero, this is confirmed analytically by study of the 2 x 2 tensor ¢,,, which has the respective
RN [ R

—u k]’ p k]” [0 «I” [0 k]

These follow from the arguments of §12; extended to general resistivities in appendix B, cf.
equations (12.1) to (12.3). For the equality of the off-diagonal terms in the first two tensors
(with a change of sign for the first), it is necessary to consider the additional one-to-one corre-
spondence between closed interaction step sequences contributing in equation (11.13) to the
tensor ¢,,, obtained by exchanging fand g components and m and » suffices. Alternatively these
two results follow from symmetry arguments like that of § 4. From equation (11.5), the eigenvalues
p* of these tensors are respectively

K+ip, k+p, Kk twice, k twice,

for the four motions. Assume p* is real. Then from equation (11.13) and from table 7 on page 442,
the diagonal terms x are complex only for the third motion; the terms x# are pure imaginary.
So real eigenvalues can be expected only for the first and fourth motions. This is consistent with
the heuristic arguments in §7, summarized in table 1 on page 426. Even for the first and fourth
motions complex eigenvalues can occur in conjugate pairs, but the dominant eigenvalues found
were always real.

Suppose h is a solution of the equation (8.13) for the first motion, with components ( £, 5, &, n)-
Then so is Th, with components

(Th)m,n = (—' 1)m+n( —8—n,m> f—n,m)' (A 1)
ClearIY5 (T2h)m,n = - (f—m,—m g-m, ——n) = _h-—m, —-n} (A 2)
== (Rh)mm

where R is the obvious operator which reflects the components about the origin. Thus defining
I as the identity operator on solutions, and P, as

P,=14+0T+0*T?*+ 3T, (A3)

where wis 1 or —1 orior —i, it follows that
T¢=R*=1, (A4)
(I-wT)P,=1—-w'T*=0. (A5)
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Thus P, h is also an eigensolution (or possibly zero), and is invariant under » 7"; and

4h = 3 P,h. (A6)

Thus any eigensolution can be expressed as a sum of at most four eigensolutions, invariant under
+ T or +i7. So it is sufficient to confine attention to eigensolutions invariant under + 7 or
under +i7.

For real eigenvalues, Qh is also a solution, with components

L. (Qh)m,n = (E;;u fn-,m_), (A 7)
and it is easy to show that
Qz =1, Q(Ch) = E(Qh)’ QR = RQ’ QT = TSQ‘
Thus QP, = (I+oT*+w2T2+%*T)Q = P,Q. (A 8)

So the eight sets of components (I + Q) P, h are either zero or also eigensolutions, their sum is 8,
and they are invariant under + @ and under T Further, if b is invariant under » 7"and @, then
ih is invariant under @ T and under — Q. So it is sufficient to confine attention to eigensolutions
invariant under @7 and Q.

Finally, if a solution is invariant under + T, it changes sign under R, and therefore h, , is zero.
In the numerical work attention was confined to solutions with h, , non-zero, in agreement with
the heuristic arguments in § 7. Further, these heuristic arguments suggest that k , is a multiple of
(1, —1i), so that Re (h, o €'%®) = (cosjx,sin hx), cf. table 1. Thus gy o = —if;, o, and this suggests
that the dominant solutions will be invariant under —i7. This was confirmed numerically;
solutions invariant under ¢ and under +i7 were actually studied, and those invariant under —i7’
always gave larger growth rates.

The operations corresponding to equations (A 1) and (A 7), and generating new eigensolutions
from given eigensolutions for the other three single-scale motions (6.1) to (6.3), are shown in
table 2 on page 428. For the second motion the eigenvector Ph corresponds to the complex conju-
gate eigenvalue. For the second and third motions the reflexion operator R generates a new
eigenvector, and commutes with all the other operators, cf. equation (A 8). For all three the
operator ) generates a new eigensolution; this is because of the symmetry of the motions (6.1)
to (6.3) between the y- and z-directions. The relevant properties of the operators are also shown
in the table; they all have unit square, but they do not all commute.

For the fourth motion the two operators @ and § commute, and there is no difficulty. If 54 and
sgare + 1, and h is an eigenvector, then the four vectors (I—s, Q) (I—sgS)h are either zero or
eigenvectors invariant under sq @ and sgS, and their sum is 4h. The fact that each eigenvalue is
repeated, the eigensolutions being degenerate, implies that it is sufficient to study eigensolutions
invariant under Q. Eigensolutions invariant under —S§ were ignored because of the assumption
that h, , is non-zero.

For the second and third motions the situation is more complicated, since although the
reflexion operator R commutes with the other operators, the operator @ does not commute with
P orP. As with the fourth motion it is possible to confine attention to eigensolutions h invariant
under sz R and sy Q. Then, from the results in the table, Ph for the second motion and Ph for the
third are invariant under sp R and —s3s¢ Q. Unless s, is unity 4, , is zero. So for the second motion
attention was largely confined to eigensolutions invariant under R and @; the numerical work
confirmed that solutions invariant under R and — @ have the complex conjugate eigenvalues.
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For the third motion, if the eigensolution h is invariant under R and @, then Ph and (I —s,P)h
are non-zero eigenvectors and are respectively invariant under — @ and s, P. Clearly the eigen-
values are repeated, attention can be confined to eigensolutions invariant under R and @ or
under R and P. The possible symmetry properties for solutions invariant under — R are shown in
the table.

B. The shape of the tensor ¢,

In this appendix the results (12.1), (12.2) and (12.3), for the shape of the tensor ¢,, introduced
in §11, are extended to cases where the series (11.10), and (11.12) for h’, and (11.13) for ¢,,, do
not converge. The extension is relevant to this paper only in the verification of the accuracy of the
computer programs for the multiple-scale versions of the third and fourth motions by their
giving degenerate eigenvalues in all cases, as predicted by equations (12.2) and (12.3). But the
result and the method of proof are interesting in themselves.

The results (12.1) to (12.3) were established from equation (11.13) by showing that for each
value of w the total contribution to the tensor ¢, has the given shape. Now the equation (11.4)
determining A’ in terms of h* can be written as

(F —2)h' = {p* +m>(Ak?) + n*(AB)}*U'AhA, (B1)
where £ is the identity operator and
DR’ = {p* 4 mP(OR) + (AR (B2)

cf. equations (13.6), (11.11), (3.3), (3.4) and (3.5). If the sequence,
Py(2) =X 2", (B 3)

is uniformly convergent, then the limit is the unique inverse (# — 2)~*. So equation (B 1) has the
solution given by equations (11.10) and (11.11), and the result (11.13) and its consequences
(12.1) to (12.3) apply. However, for these consequences it is sufficient that there is an alternative
sequence of polynomials Py(2) converging uniformly to the inverse (.# —2)~!, since the con-
tribution to ¢,, from any power of 2 has the required shape. The contribution from 2" is the
term in (11.13) with w equal to n+ 2.

Now the operator 2 is compact, because it is the uniform limit of a sequence of operators with
finite dimensional range (see §I, appendix B; in effect, this just means that whatever the values of
p*, Ak2, A2, Uj, Vk and Wi are, the term {p* +m?(Ak?) + n%(Al?)} is much greater than the terms of
" for sufficiently large values of |m|+ ||). Thus 2 has a bounded spectrum of discrete eigen-
values in the complex plane, with no point of accumulation except possibly zero (Dunford &
Schwartz 1958, p. 579). There are therefore only a finite number of eigenvalues ¢, ..., g, with
|¢;| = 1; the remainder of the spectrum satisfies |¢| < 1— 2e for some positive ¢, and from the
assumption that (& —2)~1 exists, ¢; & 1 for any i. The resolvent (¢.# —2)~1 is defined and
analytic in ¢ on the resolvent set, the complement of the spectrum, and has poles of finite order
v; at the eigenvalues g¢;.

Now consider the problem of approximating the function (1 —x)~! by polynomials. Let

M =

i

Ins:
S
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N-M
and define Yo= 2 I,
i=0
B4
y’m=ym~—1+am{1_(l_x)ym—l}3 m=12,..,M, ( )
PN(x) = Ym-
Then the error f,, = y,, — (1 —x) ! satisfies the equations
Jo = &M (2 - 1),
fm =fm—1{1 —am(l —x)},
and the error ey (x) of Py(x) is
en(x) = By(x) — (1—x)7*
KN-M+1 M
=T (e, (1) (5)
-1 5
Now define a; = 1-} (t=1,2,..,1),
1 1 (B6)
o = (E=r+Lv+2,..,v +0y),
1—4g,

and so on. Then the error ey(x) tends uniformly to zero for |x| < 1 —e¢, and has a zero of order v,
at the eigenvalues ¢; of 2 satisfying |¢;| > 1.
It can now be proved that
en(2) = Py(2)—(F-2)1—>0, (B7)

uniformly, as N—co. For (Dunford & Schwarz 1958, p. 568)

_ 1 [ en(g)dg 1 f en(g) dg
w(2) “2mfn 7 —2 " omi) r -2 (BS)

where T, is the positively oriented circle with centre the origin and radius 1—¢, and I'y is a
Jordan curve enclosing the spectral points ¢,, g, ..., ¢, in a positive sense, lying strictly outside the
circle I';, and with the point ¢ = 1 outside it. Now the integrand is analytic on and within T',,
since the resolvent (¢.# — 2)~1 has a pole of order v; and the function ey(g) has a zero of order v, at
the value ¢ = ¢;. So the integral round I', vanishes, by Cauchy’s theorem. Further, on I'; the
resolvent is bounded and ey(g) tends uniformly to zero. The result (B7) follows. Thus if the
tensor ¢, exists it takes the shapes (12.1), (12.2) and (12.3) respectively, for the three motions
(6.4), (6.5) and (6.6), whether equation (11.13) is convergent or not.

C. Accuracy of the computer programs

The equations (8.10) to (8.13) which have been solved are quite lengthy and complicated,
and so is the detailed application of the symmetry conditions shown in table 2 on page 428. It is
therefore important to demonstrate that the computer programs do indeed represent the equa
tions correctly, without forcing the reader to make a detailed examination of each one.

The accuracy of the programs for the four motions is confirmed by the agreement of the
numerical results with the respective analytic results,

. , .
p:%-x\f—%+0(%>, (C1)


http://rsta.royalsocietypublishing.org/

"'\
/N
f .

Y |

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS

y \

THE ROYAL A

PHILOSOPHICAL
TRANSACTIONS

AL A

A A

N

—%

SOCIETY

OF

OF

Downloaded from rsta.royalsocietypublishing.org

TWO-DIMENSIONAL SPATIALLY PERIODIC DYNAMOS 453

: ~ 2 2

pesfiro ) a4+
(3 ‘ , 2

p=-ilZro(L))-w-f+o(5). (©3)

TSy i G4

p===g* %) (@9

which are valid for A > 1 and j < 1. These results follow from analysis similar to the multiple-
scale analysis of §13, but with

U=V=W=k=I1l=1, (C5)
so that equation (13.1) and its consequences do not apply. The regenerative terms are of order
72|25 for the second and third motions, and of order j2/A3 for the fourth, but with equations (C 5)
holding and with A > 1 the many negative contributions swamp them.

The accuracy of the two programs for the first motion, the second assuming a real eigenvalue
and making use of an additional symmetry property, is further confirmed by their exact agree-
ment together, and by their giving real eigenvalues (despite the matrix being complex and non-
Hermitian so that any error in the program would be likely to remove this property).

The accuracy of the program for the second motion is confirmed by the agreement of the
numerical results with the result of appendix A, shown in table 2, that if {p, b ,} is an eigen-
solution with h,,, ,, invariant under R and @, then {, (Ph)$,} is an eigensolution invariant under
R and — Q.

The accuracy of the programs for the third and fourth motions is further confirmed by results
obtained with separate multiple-scale programs, the truncation equation (10.1) being used for
both motions, and fewer symmetry conditions. The application of these programs for various
realizations of the inequalities of §13 and table 8 and for s > 2 gave numerical results in precise
agreement with the analytic ones; the application with equation (10.26) holding (and with s
sufficiently large for the fourth motion with a different truncation) gave results agreeing with
those for the single-scale computer programs. Further, the identical degeneracy of the eigenvalues
indicated by the tensor shapes (12.2) and (12.3), and shown to apply generally in appendix B,
was confirmed by the numerical results obtained using the multiple-scale programs. Eigen-
solutions with f; o zero and with g, , zero had eigenvalues agreeing to 12 significant figures.
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